Source code for astroquery.gaia.core

# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
=============
Gaia TAP plus
=============

@author: Juan Carlos Segovia
@contact: juan.carlos.segovia@sciops.esa.int

European Space Astronomy Centre (ESAC)
European Space Agency (ESA)

Created on 30 jun. 2016
Modified on 18 Ene. 2022 by mhsarmiento
"""
import json
import os
import shutil
import zipfile
from collections.abc import Iterable
from datetime import datetime, timezone
from pathlib import Path

from astropy import units
from astropy import units as u
from astropy.coordinates import Angle
from astropy.io import fits
from astropy.io import votable
from astropy.table import Table
from astropy.units import Quantity
from requests import HTTPError

from astroquery import log
from astroquery.utils import commons
from astroquery.utils.tap import TapPlus
from astroquery.utils.tap import taputils
from . import conf


[docs] class GaiaClass(TapPlus): """ Proxy class to default TapPlus object (pointing to Gaia Archive) """ MAIN_GAIA_TABLE = None MAIN_GAIA_TABLE_RA = conf.MAIN_GAIA_TABLE_RA MAIN_GAIA_TABLE_DEC = conf.MAIN_GAIA_TABLE_DEC ROW_LIMIT = conf.ROW_LIMIT VALID_DATALINK_RETRIEVAL_TYPES = conf.VALID_DATALINK_RETRIEVAL_TYPES VALID_LINKING_PARAMETERS = conf.VALID_LINKING_PARAMETERS GAIA_MESSAGES = "notification?action=GetNotifications" USE_NAMES_OVER_IDS = True """When `True` use the ``name`` attributes of columns as the names of columns in the `astropy.table.Table` instance. Since names are not guaranteed to be unique, this may cause some columns to be renamed by appending numbers to the end. Otherwise, use the ID attributes as the column names. """ def __init__(self, *, tap_plus_conn_handler=None, datalink_handler=None, gaia_tap_server='https://gea.esac.esa.int/', gaia_data_server='https://gea.esac.esa.int/', tap_server_context="tap-server", data_server_context="data-server", verbose=False, show_server_messages=True): super(GaiaClass, self).__init__(url=gaia_tap_server, server_context=tap_server_context, tap_context="tap", upload_context="Upload", table_edit_context="TableTool", data_context="data", datalink_context="datalink", connhandler=tap_plus_conn_handler, verbose=verbose, use_names_over_ids=self.USE_NAMES_OVER_IDS) # Data uses a different TapPlus connection if datalink_handler is None: self.__gaiadata = TapPlus(url=gaia_data_server, server_context=data_server_context, tap_context="tap", upload_context="Upload", table_edit_context="TableTool", data_context="data", datalink_context="datalink", verbose=verbose, use_names_over_ids=self.USE_NAMES_OVER_IDS) else: self.__gaiadata = datalink_handler # Enable notifications if show_server_messages: self.get_status_messages()
[docs] def login(self, *, user=None, password=None, credentials_file=None, verbose=False): """Performs a login. User and password arguments can be used or a file that contains username and password (2 lines: one for username and the following one for the password). If no arguments are provided, a prompt asking for username and password will appear. Parameters ---------- user : str, default None login name password : str, default None user password credentials_file : str, default None file containing user and password in two lines verbose : bool, optional, default 'False' flag to display information about the process """ try: log.info("Login to gaia TAP server") TapPlus.login(self, user=user, password=password, credentials_file=credentials_file, verbose=verbose) except HTTPError: log.error("Error logging in TAP server") return new_user = self._TapPlus__user new_password = self._TapPlus__pwd try: log.info("Login to gaia data server") TapPlus.login(self.__gaiadata, user=new_user, password=new_password, verbose=verbose) except HTTPError: log.error("Error logging in data server") log.error("Logging out from TAP server") TapPlus.logout(self, verbose=verbose)
[docs] def login_gui(self, *, verbose=False): """Performs a login using a GUI dialog Parameters ---------- verbose : bool, optional, default 'False' flag to display information about the process """ try: log.info("Login to gaia TAP server") TapPlus.login_gui(self, verbose=verbose) except HTTPError: log.error("Error logging in TAP server") return new_user = self._TapPlus__user new_password = self._TapPlus__pwd try: log.info("Login to gaia data server") TapPlus.login(self.__gaiadata, user=new_user, password=new_password, verbose=verbose) except HTTPError: log.error("Error logging in data server") log.error("Logging out from TAP server") TapPlus.logout(self, verbose=verbose)
[docs] def logout(self, *, verbose=False): """Performs a logout Parameters ---------- verbose : bool, optional, default 'False' flag to display information about the process """ try: TapPlus.logout(self, verbose=verbose) except HTTPError: log.error("Error logging out TAP server") return log.info("Gaia TAP server logout OK") try: TapPlus.logout(self.__gaiadata, verbose=verbose) log.info("Gaia data server logout OK") except HTTPError: log.error("Error logging out data server")
[docs] def load_data(self, ids, *, data_release=None, data_structure='INDIVIDUAL', retrieval_type="ALL", linking_parameter='SOURCE_ID', valid_data=False, band=None, avoid_datatype_check=False, format="votable", output_file=None, overwrite_output_file=False, verbose=False): """Loads the specified table TAP+ only Parameters ---------- ids : str, int, str list or int list, mandatory list of identifiers data_release: str, optional, default None data release from which data should be taken. E.g. 'Gaia DR3' By default, it takes the current default one. data_structure: str, optional, default 'INDIVIDUAL' it can be 'INDIVIDUAL' or 'RAW': 'INDIVIDUAL' means products are provided in separate files for each sourceId. All files are zipped in a single bundle, even if only one source/file is considered 'RAW' means products are provided following a Data Model similar to that used in the MDB, meaning in particular that parameters stored as arrays will remain as such. A single file is provided for the data of all sourceIds together, but in this case there will be always be one row per sourceId retrieval_type : str, optional, default 'ALL' to retrieve all data from the list of sources retrieval type identifier. For GAIA DR2 possible values are ['EPOCH_PHOTOMETRY'] For GAIA DR3, possible values are ['EPOCH_PHOTOMETRY', 'RVS', 'XP_CONTINUOUS', 'XP_SAMPLED', 'MCMC_GSPPHOT' or 'MCMC_MSC'] For GAIA DR4, possible values will be ['EPOCH_PHOTOMETRY', 'RVS', 'XP_CONTINUOUS', 'XP_SAMPLED', 'MCMC_GSPPHOT', 'MCMC_MSC', 'EPOCH_ASTROMETRY', 'RV_EPOCH_SINGLE', 'RV_EPOCH_DOUBLE', 'RVS_EPOCH' or 'RVS_TRANSIT', 'EPOCH_ASTROMETRY_CROWDED_FIELD', 'EPOCH_IMAGE', 'EPOCH_PHOTOMETRY_CCD', 'XP_EPOCH_SPECTRUM_SSO', 'XP_EPOCH_CROWDING', 'XP_MEAN_SPECTRUM', 'XP_EPOCH_SPECTRUM', 'CROWDED_FIELD_IMAGE']. Note that for 'CROWDED_FIELD_IMAGE' only the format 'fits' can be used, and that its image, in the principal header, will not be available in the returned dictionary. Set 'output_file' to retrieve all data: image + tables. linking_parameter : str, optional, default SOURCE_ID, valid values: SOURCE_ID, TRANSIT_ID, IMAGE_ID By default, all the identifiers are considered as source_id SOURCE_ID: the identifiers are considered as source_id TRANSIT_ID: the identifiers are considered as transit_id IMAGE_ID: the identifiers are considered as sif_observation_id valid_data : bool, optional, default False By default, the epoch photometry service returns all available data, including data rows where flux is null and/or the rejected_by_photometry flag is set to True. In order to retrieve only valid data (data rows where flux is not null and/or the rejected_by_photometry flag is set to False) this request parameter should be included with valid_data=True. band : str, optional, default None, valid values: G, BP, RP By default, the epoch photometry service returns all the available photometry bands for the requested source. This parameter allows to filter the output lightcurve by its band. avoid_datatype_check: boolean, optional, default False. By default, this value will be set to False. If it is set to 'true' the Datalink items tags will not be checked. format : str, optional, default 'votable' loading format. Other available formats are 'csv', 'ecsv','votable_plain' and 'fits' output_file : string or pathlib.PosixPath, optional, default None file where the results are saved. If it is not provided, the http response contents are returned. overwrite_output_file : boolean, optional, default False To overwrite the output_file if it already exists. verbose : bool, optional, default 'False' flag to display information about the process Returns ------- A dictionary where the keys are the file names and its value is a list of astropy.table.table.Table objects """ now = datetime.now(timezone.utc) now_formatted = now.strftime("%Y%m%d_%H%M%S") temp_dirname = "temp_" + now_formatted downloadname_formated = "download_" + now_formatted output_file_specified = False if output_file is None: output_file = os.path.join(os.getcwd(), temp_dirname, downloadname_formated) else: output_file_specified = True if isinstance(output_file, str): if not output_file.lower().endswith('.zip'): output_file = output_file + '.zip' elif isinstance(output_file, Path): if not output_file.suffix.endswith('.zip'): output_file.with_suffix('.zip') output_file = os.path.abspath(output_file) if not overwrite_output_file and os.path.exists(output_file): raise ValueError(f"{output_file} file already exists. Please use overwrite_output_file='True' to " f"overwrite output file.") path = os.path.dirname(output_file) if avoid_datatype_check is False: # we need to check params rt = str(retrieval_type).upper() if rt != 'ALL' and rt not in self.VALID_DATALINK_RETRIEVAL_TYPES: raise ValueError(f"Invalid mandatory argument 'retrieval_type'. Found {retrieval_type}, " f"expected: 'ALL' or any of {self.VALID_DATALINK_RETRIEVAL_TYPES}") params_dict = {} if not valid_data or str(retrieval_type) == 'ALL': params_dict['VALID_DATA'] = "false" elif valid_data: params_dict['VALID_DATA'] = "true" if band is not None: if band != 'G' and band != 'BP' and band != 'RP': raise ValueError(f"Invalid band value '{band}' (Valid values: 'G', 'BP' and 'RP)") else: params_dict['BAND'] = band if isinstance(ids, str): ids_arg = ids else: if isinstance(ids, int): ids_arg = str(ids) else: ids_arg = ','.join(str(item) for item in ids) params_dict['ID'] = ids_arg if data_release is not None: params_dict['RELEASE'] = data_release params_dict['DATA_STRUCTURE'] = data_structure params_dict['FORMAT'] = str(format) params_dict['RETRIEVAL_TYPE'] = str(retrieval_type) params_dict['USE_ZIP_ALWAYS'] = 'true' if linking_parameter not in self.VALID_LINKING_PARAMETERS: raise ValueError( f"Invalid linking_parameter value '{linking_parameter}' (Valid values: " f"{', '.join(self.VALID_LINKING_PARAMETERS)})") else: if linking_parameter != 'SOURCE_ID': params_dict['LINKING_PARAMETER'] = linking_parameter if path != '': try: os.mkdir(path) except FileExistsError: log.error("Path %s already exist" % path) except OSError: log.error("Creation of the directory %s failed" % path) try: self.__gaiadata.load_data(params_dict=params_dict, output_file=output_file, verbose=verbose) files = Gaia.__get_data_files(output_file=output_file, path=path) except Exception as err: raise err finally: if not output_file_specified: shutil.rmtree(path) if verbose: if output_file_specified: log.info("output_file = %s" % output_file) if log.isEnabledFor(20): log.debug("List of products available:") for item in sorted([key for key in files.keys()]): log.debug("Product = " + item) return files
@staticmethod def __get_data_files(output_file, path): files = {} if zipfile.is_zipfile(output_file): with zipfile.ZipFile(output_file, 'r') as zip_ref: zip_ref.extractall(os.path.dirname(output_file)) # r=root, d=directories, f = files for r, d, f in os.walk(path): for file in f: if file.lower().endswith(('.fits', '.xml', '.csv', '.ecsv')): files[file] = os.path.join(r, file) for key, value in files.items(): if '.fits' in key: tables = [] with fits.open(value) as hduList: num_hdus = len(hduList) for i in range(1, num_hdus): table = Table.read(hduList[i], format='fits') Gaia.correct_table_units(table) tables.append(table) files[key] = tables elif '.xml' in key: tables = [] for table in votable.parse(value).iter_tables(): tables.append(table) files[key] = tables elif '.csv' in key: tables = [] table = Table.read(value, format='ascii.csv', fast_reader=False) tables.append(table) files[key] = tables elif '.json' in key: tables = [] with open(value) as f: data = json.load(f) if data.get('data') and data.get('metadata'): column_name = [] for name in data['metadata']: column_name.append(name['name']) result = Table(rows=data['data'], names=column_name, masked=True) for v in data['metadata']: col_name = v['name'] result[col_name].unit = v['unit'] result[col_name].description = v['description'] result[col_name].meta = {'metadata': v} files[key] = result else: tables.append(Table.read(value, format='pandas.json')) files[key] = tables return files def __query_object(self, coordinate, *, radius=None, width=None, height=None, async_job=False, verbose=False, columns=()): """Launches a job TAP & TAP+ Parameters ---------- coordinate : str or astropy.coordinate, mandatory coordinates center point radius : str or astropy.units if no 'width' nor 'height' are provided radius (deg) width : str or astropy.units if no 'radius' is provided box width height : str or astropy.units if no 'radius' is provided box height async_job : bool, optional, default 'False' executes the query (job) in asynchronous/synchronous mode (default synchronous) verbose : bool, optional, default 'False' flag to display information about the process columns: list, optional, default () if empty, all columns will be selected Returns ------- The job results (astropy.table). """ coord = self.__getCoordInput(coordinate, "coordinate") if radius is not None: job = self.__cone_search(coord, radius, async_job=async_job, verbose=verbose, columns=columns) else: raHours, dec = commons.coord_to_radec(coord) ra = raHours * 15.0 # Converts to degrees widthQuantity = self.__getQuantityInput(width, "width") heightQuantity = self.__getQuantityInput(height, "height") widthDeg = widthQuantity.to(units.deg) heightDeg = heightQuantity.to(units.deg) if columns: columns = ','.join(map(str, columns)) else: columns = "*" query = """ SELECT {row_limit} DISTANCE( POINT('ICRS', {ra_column}, {dec_column}), POINT('ICRS', {ra}, {dec}) ) as dist, {columns} FROM {table_name} WHERE 1 = CONTAINS( POINT('ICRS', {ra_column}, {dec_column}), BOX( 'ICRS', {ra}, {dec}, {width}, {height} ) ) ORDER BY dist ASC """.format(**{'row_limit': "TOP {0}".format(self.ROW_LIMIT) if self.ROW_LIMIT > 0 else "", 'ra_column': self.MAIN_GAIA_TABLE_RA, 'dec_column': self.MAIN_GAIA_TABLE_DEC, 'columns': columns, 'table_name': self.MAIN_GAIA_TABLE or conf.MAIN_GAIA_TABLE, 'ra': ra, 'dec': dec, 'width': widthDeg.value, 'height': heightDeg.value}) if async_job: job = self.launch_job_async(query, verbose=verbose) else: job = self.launch_job(query, verbose=verbose) return job.get_results()
[docs] def query_object(self, coordinate, *, radius=None, width=None, height=None, verbose=False, columns=()): """Launches a synchronous cone search for the input search radius or the box on the sky, sorted by angular separation TAP & TAP+ Parameters ---------- coordinate : str or astropy.coordinates, mandatory coordinates center point radius : str or astropy.units if no 'width'/'height' are provided radius (deg) width : str or astropy.units if no 'radius' is provided box width height : str or astropy.units if no 'radius' is provided box height verbose : bool, optional, default 'False' flag to display information about the process columns: list, optional, default () if empty, all columns will be selected Returns ------- The job results (astropy.table). """ return self.__query_object(coordinate, radius=radius, width=width, height=height, async_job=False, verbose=verbose, columns=columns)
[docs] def query_object_async(self, coordinate, *, radius=None, width=None, height=None, verbose=False, columns=()): """Launches an asynchronous cone search for the input search radius or the box on the sky, sorted by angular separation TAP & TAP+ Parameters ---------- coordinate : str or astropy.coordinates, mandatory coordinates center point radius : str or astropy.units if no 'width'/'height' are provided radius width : str or astropy.units if no 'radius' is provided box width height : str or astropy.units if no 'radius' is provided box height verbose : bool, optional, default 'False' flag to display information about the process columns: list, optional, default () if empty, all columns will be selected Returns ------- The job results (astropy.table). """ return self.__query_object(coordinate, radius=radius, width=width, height=height, async_job=True, verbose=verbose, columns=columns)
def __cone_search(self, coordinate, radius, *, table_name=None, ra_column_name=MAIN_GAIA_TABLE_RA, dec_column_name=MAIN_GAIA_TABLE_DEC, async_job=False, background=False, output_file=None, output_format="votable_gzip", verbose=False, dump_to_file=False, columns=()): """Cone search sorted by distance TAP & TAP+ Parameters ---------- coordinate : astropy.coordinate, mandatory coordinates center point radius : astropy.units, mandatory radius table_name : str, optional, default main gaia table name doing the cone search against ra_column_name : str, optional, default ra column in main gaia table ra column doing the cone search against dec_column_name : str, optional, default dec column in main gaia table dec column doing the cone search against async_job : bool, optional, default 'False' executes the job in asynchronous/synchronous mode (default synchronous) background : bool, optional, default 'False' when the job is executed in asynchronous mode, this flag specifies whether the execution will wait until results are available output_file : str, optional, default None file name where the results are saved if ``dump_to_file`` is True. If this parameter is not provided, the jobid is used instead output_format : str, optional, default 'votable_gzip' results format. Available formats are: 'votable', 'votable_plain', 'fits', 'csv', 'ecsv' and 'json', default is 'votable'. verbose : bool, optional, default 'False' flag to display information about the process dump_to_file : bool, optional, default 'False' if True, the results are saved in a file instead of using memory columns: list, optional, default () if empty, all columns will be selected Returns ------- A Job object """ radiusDeg = None coord = self.__getCoordInput(coordinate, "coordinate") raHours, dec = commons.coord_to_radec(coord) ra = raHours * 15.0 # Converts to degrees if radius is not None: radiusDeg = Angle(self.__getQuantityInput(radius, "radius")).to_value(u.deg) if columns: columns = ','.join(map(str, columns)) else: columns = "*" query = """ SELECT {row_limit} {columns}, DISTANCE( POINT('ICRS', {ra_column}, {dec_column}), POINT('ICRS', {ra}, {dec}) ) AS dist FROM {table_name} WHERE 1 = CONTAINS( POINT('ICRS', {ra_column}, {dec_column}), CIRCLE('ICRS', {ra}, {dec}, {radius}) ) ORDER BY dist ASC """.format(**{'ra_column': ra_column_name, 'row_limit': "TOP {0}".format(self.ROW_LIMIT) if self.ROW_LIMIT > 0 else "", 'dec_column': dec_column_name, 'columns': columns, 'ra': ra, 'dec': dec, 'radius': radiusDeg, 'table_name': table_name or self.MAIN_GAIA_TABLE or conf.MAIN_GAIA_TABLE}) if async_job: return self.launch_job_async(query=query, output_file=output_file, output_format=output_format, verbose=verbose, dump_to_file=dump_to_file, background=background) else: return self.launch_job(query=query, output_file=output_file, output_format=output_format, verbose=verbose, dump_to_file=dump_to_file)
[docs] def cone_search_async(self, coordinate, *, radius=None, table_name=None, ra_column_name=MAIN_GAIA_TABLE_RA, dec_column_name=MAIN_GAIA_TABLE_DEC, background=False, output_file=None, output_format="votable_gzip", verbose=False, dump_to_file=False, columns=()): """Cone search sorted by distance (async) TAP & TAP+ Parameters ---------- coordinate : str or astropy.coordinate, mandatory coordinates center point radius : str or astropy.units, mandatory radius table_name : str, optional, default main gaia table name doing the cone search against ra_column_name : str, optional, default ra column in main gaia table ra column doing the cone search against dec_column_name : str, optional, default dec column in main gaia table dec column doing the cone search against background : bool, optional, default 'False' when the job is executed in asynchronous mode, this flag specifies whether the execution will wait until results are available output_file : str, optional, default None file name where the results are saved if ``dump_to_file`` is True. If this parameter is not provided, the jobid is used instead output_format : str, optional, default 'votable_gzip' results format. Available formats are: 'votable', 'votable_plain', 'fits', 'csv', 'ecsv' and 'json', default is 'votable'. verbose : bool, optional, default 'False' flag to display information about the process dump_to_file : bool, optional, default 'False' if True, the results are saved in a file instead of using memory columns: list, optional, default () if empty, all columns will be selected Returns ------- A Job object """ return self.__cone_search(coordinate, radius=radius, table_name=table_name, ra_column_name=ra_column_name, dec_column_name=dec_column_name, async_job=True, background=background, output_file=output_file, output_format=output_format, verbose=verbose, dump_to_file=dump_to_file, columns=columns)
def __checkQuantityInput(self, value, msg): if not (isinstance(value, str) or isinstance(value, units.Quantity)): raise ValueError(f"{msg} must be either a string or astropy coordinates") def __getQuantityInput(self, value, msg): if value is None: raise ValueError(f"Missing required argument: {msg}") if not (isinstance(value, str) or isinstance(value, units.Quantity)): raise ValueError(f"{msg} must be either a string or astropy.coordinates") if isinstance(value, str): return Quantity(value) else: return value def __checkCoordInput(self, value, msg): if not (isinstance(value, str) or isinstance(value, commons.CoordClasses)): raise ValueError(f"{msg} must be either a string or astropy.coordinates") def __getCoordInput(self, value, msg): if not (isinstance(value, str) or isinstance(value, commons.CoordClasses)): raise ValueError(f"{msg} must be either a string or astropy.coordinates") if isinstance(value, str): return commons.parse_coordinates(value) else: return value
[docs] @staticmethod def correct_table_units(table): """Correct format in the units of the columns TAP & TAP+ Parameters ---------- table : `~astropy.table.Table`, mandatory change the format of the units in the columns of the input table: '.' by ' ' and "'" by "" """ for cn in table.colnames: col = table[cn] if isinstance(col.unit, u.UnrecognizedUnit): try: col.unit = u.Unit(col.unit.name.replace(".", " ").replace("'", "")) except Exception: pass elif isinstance(col.unit, str): col.unit = col.unit.replace(".", " ").replace("'", "")
[docs] def load_user(self, user_id, *, verbose=False): """Loads the specified user TAP+ only Parameters ---------- user_id : str, mandatory user id to load verbose : bool, optional, default 'False' flag to display information about the process Returns ------- A user """ return self.is_valid_user(user_id=user_id, verbose=verbose)
[docs] def cross_match(self, *, full_qualified_table_name_a, full_qualified_table_name_b, results_table_name, radius=1.0, background=False, verbose=False): """Performs a cross-match between the specified tables The result is a join table (stored in the user storage area) with the identifies of both tables and the distance. TAP+ only Parameters ---------- full_qualified_table_name_a : str, mandatory a full qualified table name (i.e. schema name and table name) full_qualified_table_name_b : str, mandatory a full qualified table name (i.e. schema name and table name) results_table_name : str, mandatory a table name without schema. The schema is set to the user one radius : float (arc. seconds), optional, default 1.0 radius (valid range: 0.1-10.0) background : bool, optional, default 'False' when the job is executed in asynchronous mode, this flag specifies whether the execution will wait until results are available verbose : bool, optional, default 'False' flag to display information about the process Returns ------- A Job object """ if radius < 0.1 or radius > 10.0: raise ValueError(f"Invalid radius value. Found {radius}, valid range is: 0.1 to 10.0") schemaA = taputils.get_schema_name(full_qualified_table_name_a) if schemaA is None: raise ValueError(f"Not found schema name in full qualified table A: '{full_qualified_table_name_a}'") tableA = taputils.get_table_name(full_qualified_table_name_a) schemaB = taputils.get_schema_name(full_qualified_table_name_b) if schemaB is None: raise ValueError(f"Not found schema name in full qualified table B: '{full_qualified_table_name_b}'") tableB = taputils.get_table_name(full_qualified_table_name_b) if taputils.get_schema_name(results_table_name) is not None: raise ValueError("Please, do not specify schema for 'results_table_name'") query = f"SELECT crossmatch_positional('{schemaA}','{tableA}','{schemaB}','{tableB}',{radius}, " \ f"'{results_table_name}') FROM dual;" name = str(results_table_name) return self.launch_job_async(query=query, name=name, output_file=None, output_format="votable_gzip", verbose=verbose, dump_to_file=False, background=background, upload_resource=None, upload_table_name=None)
[docs] def launch_job(self, query, *, name=None, output_file=None, output_format="votable_gzip", verbose=False, dump_to_file=False, upload_resource=None, upload_table_name=None): """Launches a synchronous job Parameters ---------- query : str, mandatory query to be executed name : str, optional, default None custom name defined by the user for the job that is going to be created output_file : str, optional, default None file name where the results are saved if ``dump_to_file`` is True. If this parameter is not provided, the jobid is used instead output_format : str, optional, default 'votable_gzip' results format. Available formats are: 'votable_gzip', 'votable', 'votable_plain', 'fits', 'csv', 'ecsv' and 'json', default is 'votable_gzip'. Returned results for 'votable_gzip', 'ecsv' and 'fits' formats are compressed gzip files. verbose : bool, optional, default 'False' flag to display information about the process dump_to_file : bool, optional, default 'False' if True, the results are saved in a file instead of using memory upload_resource : str, optional, default None resource to be uploaded to UPLOAD_SCHEMA upload_table_name : str, optional, default None resource temporary table name associated to the uploaded resource. This argument is required if ``upload_resource`` is provided. Returns ------- A Job object """ return TapPlus.launch_job(self, query=query, name=name, output_file=output_file, output_format=output_format, verbose=verbose, dump_to_file=dump_to_file, upload_resource=upload_resource, upload_table_name=upload_table_name, format_with_results_compressed=('votable_gzip',))
[docs] def launch_job_async(self, query, *, name=None, output_file=None, output_format="votable_gzip", verbose=False, dump_to_file=False, background=False, upload_resource=None, upload_table_name=None, autorun=True): """Launches an asynchronous job Parameters ---------- query : str, mandatory query to be executed name : str, optional, default None custom name defined by the user for the job that is going to be created output_file : str, optional, default None file name where the results are saved if ``dump_to_file`` is True. If this parameter is not provided, the jobid is used instead output_format : str, optional, default 'votable_gzip' results format. Available formats are: 'votable_gzip', 'votable', 'votable_plain', 'fits', 'csv' and 'json', default is 'votable_gzip'. Returned results for 'votable_gzip' 'ecsv' and 'fits' format are compressed gzip files. verbose : bool, optional, default 'False' flag to display information about the process dump_to_file : bool, optional, default 'False' if True, the results are saved in a file instead of using memory background : bool, optional, default 'False' when the job is executed in asynchronous mode, this flag specifies whether the execution will wait until results are available upload_resource : str, optional, default None resource to be uploaded to UPLOAD_SCHEMA upload_table_name : str, optional, default None resource temporary table name associated to the uploaded resource. This argument is required if ``upload_resource`` is provided. autorun : boolean, optional, default True if 'True', sets 'phase' parameter to 'RUN', so the framework can start the job. Returns ------- A Job object """ return TapPlus.launch_job_async(self, query=query, name=name, output_file=output_file, output_format=output_format, verbose=verbose, dump_to_file=dump_to_file, background=background, upload_resource=upload_resource, upload_table_name=upload_table_name, autorun=autorun, format_with_results_compressed=('votable_gzip',))
[docs] def get_status_messages(self): """Retrieve the messages to inform users about the status of Gaia TAP """ try: sub_context = self.GAIA_MESSAGES conn_handler = self._TapPlus__getconnhandler() response = conn_handler.execute_tapget(sub_context, verbose=False) if response.status == 200: if isinstance(response, Iterable): for line in response: try: print(line.decode("utf-8").split('=', 1)[1]) except ValueError as e: print(e) except IndexError: print("Archive down for maintenance") except OSError: print("Status messages could not be retrieved")
Gaia = GaiaClass()