ESA HST Archive (astroquery.esa.hubble)

The Hubble Space Telescope (HST) is a joint ESA/NASA orbiting astronomical observatory operating from the near-infrared into the ultraviolet. Launched in 1990 and scheduled to operate at least through 2020, HST carries and has carried a wide variety of instruments producing imaging, spectrographic, astrometric, and photometric data through both pointed and parallel observing programs. During its lifetime HST has become one of the most important science projects ever, with over 500 000 observations of more than 30000 targets available for retrieval from the Archive.

This package allows the access to the European Space Agency Hubble Archive. All the HST observations available in the EHST are synchronised with the MAST services for HST reprocessed public data and corresponding metadata. Therefore, excluding proprietary data, all HST data in the EHST are identical to those in MAST.

Examples

It is highly recommended checking the status of eHST TAP before executing this module. To do this:

>>> from astroquery.esa.hubble import ESAHubble
>>> esahubble = ESAHubble()
>>> esahubble.get_status_messages()

This method will retrieve the same warning messages shown in eHST Science Archive with information about service degradation.

1. Getting Hubble products

This function allows the user to download products based on their observation ID (mandatory) and a required calibration_level (RAW, CALIBRATED, PRODUCT or AUXILIARY) and/or product type (SCIENCE, PREVIEW, THUMBNAIL or AUXILIARY).

Deprecation Warning: product types PRODUCT, SCIENCE_PRODUCT or POSTCARD are no longer supported. Please modify your scripts accordingly.

This will download all files for the raw calibration level of the observation ‘j6fl25s4q’ and it will store them in a tar called ‘raw_data_for_j6fl25s4q.tar’.

>>> from astroquery.esa.hubble import ESAHubble
>>> esahubble = ESAHubble()
>>> esahubble.download_product(observation_id="j6fl25s4q", calibration_level="RAW",
...                            filename="raw_data_for_j6fl25s4q.fits")  

This will download the science files associated to the observation ‘j6fl25s4q’ and it will store them in a file called ‘science_data_for_j6fl25s4q.tar.fits.gz’, modifying the filename provided to ensure that the extension of the file is correct.

>>> from astroquery.esa.hubble import ESAHubble
>>> esahubble = ESAHubble()
>>> esahubble.download_product(observation_id="j6fl25s4q", product_type="SCIENCE",
...                            filename="science_data_for_j6fl25s4q.fits")   

This third case will download the science files associated to the observation ‘j6fl25s4q’ in raw calibration level and it will store them in a file called ‘science_raw_data_for_j6fl25s4q.fits.gz’, modifying the filename provided to ensure that the extension of the file is correct.

>>> from astroquery.esa.hubble import ESAHubble
>>> esahubble = ESAHubble()
>>> esahubble.download_product(observation_id="j6fl25s4q", calibration_level="RAW",
...                            filename="science_raw_data_for_j6fl25s4q", product_type="SCIENCE")   

2. Getting Hubble postcards

>>> from astroquery.esa.hubble import ESAHubble
>>> esahubble = ESAHubble()
>>> esahubble.get_postcard(observation_id="j6fl25s4q", calibration_level="RAW", resolution=256, filename="raw_postcard_for_j6fl25s4q.jpg")  

This will download the postcard for the observation ‘J8VP03010’ with low resolution (256) and it will stored in a jpg called ‘raw_postcard_for_j6fl25s4q.jpg’. Resolution of 1024 is also available.

Calibration levels can be RAW, CALIBRATED, PRODUCT or AUXILIARY.

3. Getting Hubble artifacts

Note: Artifact is a single Hubble product file.

>>> from astroquery.esa.hubble import ESAHubble
>>> esahubble = ESAHubble()
>>> esahubble.get_artifact(artifact_id="w0ji0v01t_c2f.fits")

This will download the compressed artifact ‘w0ji0v01t_c2f.fits.gz’. ‘w0ji0v01t_c2f.fits’ is the name of the Hubble artifact to be download.

4. Querying target names in the Hubble archive

The query_target function queries the name of the target as given by the proposer of the observations.

>>> from astroquery.esa.hubble import ESAHubble
>>> esahubble = ESAHubble()
>>> table = esahubble.query_target(name="m31", filename="m31_query.xml.gz")  

This will retrieve a table with the output of the query. It will also download a file storing all metadata for all observations associated with target name ‘m31’. The result of the query will be stored in file ‘m31_query.xml.gz’.

5. Querying observations by search criteria in the Hubble archive

The query_criteria function uses a set of established parameters to create and execute an ADQL query, accessing the HST archive database usgin the Table Access Protocol (TAP).

  • calibration_level (str or int, optional): The identifier of the data reduction/processing applied to the data.

  • RAW (1)

  • CALIBRATED (2)

  • PRODUCT (3)

  • AUXILIARY (0)

  • data_product_type (str, optional): High level description of the product.

  • image

  • spectrum

  • timeseries

  • intent (str, optional): The intent of the original obsever in acquiring this observation.

  • SCIENCE

  • CALIBRATION

  • collection (list of strings, optional): List of collections that are available in eHST catalogue.

  • HLA

  • HST

Do not forget that this is a list of elements, so it must be defined as [‘HST’], [‘HST’, ‘HLA’]…

  • instrument_name (list of strings, optional): Name(s) of the instrument(s) used to generate the dataset. This is also a list of elements.

  • filters (list of strings, optional): Name(s) of the filter(s) used to generate the dataset. This is also a list of elements.

  • async_job (bool, optional, default ‘True’): executes the query (job) in asynchronous/synchronous mode (default synchronous)

  • output_file (str, optional, default None) file name where the results are saved if dumpToFile is True. If this parameter is not provided, the jobid is used instead

  • output_format (str, optional, default ‘votable’) results format

  • verbose (bool, optional, default ‘False’): flag to display information about the process

  • get_query (bool, optional, default ‘False’): flag to return the query associated to the criteria as the result of this function.

This is an example of a query with all the parameters and the verbose flag activated, so the query is shown as a log message.

>>> from astroquery.esa.hubble import ESAHubble
>>> esahubble = ESAHubble()
>>> result = esahubble.query_criteria(calibration_level = 3,
...                                   data_product_type = 'image',
...                                   intent='SCIENCE',
...                                   obs_collection=['HLA'],
...                                   instrument_name = ['WFC3'],
...                                   filters = ['F555W', 'F606W'],
...                                   async_job = False,
...                                   output_file = 'output1.vot.gz',
...                                   output_format="votable",
...                                   verbose = True,
...                                   get_query = False)    
INFO: select o.*, p.calibration_level, p.data_product_type, pos.ra, pos.dec from ehst.observation AS o JOIN ehst.plane as p on o.observation_uuid=p.observation_uuid JOIN ehst.position as pos on p.plane_id = pos.plane_id where(p.calibration_level LIKE '%PRODUCT%' AND p.data_product_type LIKE '%image%' AND o.intent LIKE '%SCIENCE%' AND (o.collection LIKE '%HLA%') AND (o.instrument_name LIKE '%WFC3%') AND (o.instrument_configuration LIKE '%F555W%' OR o.instrument_configuration LIKE '%F606W%')) [astroquery.esa.hubble.core]
Launched query: 'select  TOP 2000 o.*, p.calibration_level, p.data_product_type, pos.ra, pos.dec from ehst.observation AS o JOIN ehst.plane as p on o.observation_uuid=p.observation_uuid JOIN ehst.position as pos on p.plane_id = pos.plane_id where(p.calibration_level LIKE '%PRODUCT%' AND p.data_product_type LIKE '%image%' AND o.intent LIKE '%SCIENCE%' AND (o.collection LIKE '%HLA%') AND (o.instrument_name LIKE '%WFC3%') AND (o.instrument_configuration LIKE '%F555W%' OR o.instrument_configuration LIKE '%F606W%'))'
------>http
host = hst.esac.esa.int:80
context = /tap-server/tap//sync
Content-type = application/x-www-form-urlencoded
200 200
[('Date', 'Mon, 25 Jul 2022 15:46:58 GMT'), ('Server', 'Apache/2.4.6 (Red Hat Enterprise Linux) OpenSSL/1.0.2k-fips PHP/5.4.16 mod_jk/1.2.48'), ('Cache-Control', 'no-cache, no-store, max-age=0, must-revalidate'), ('Pragma', 'no-cache'), ('Expires', '0'), ('X-XSS-Protection', '1; mode=block'), ('X-Frame-Options', 'SAMEORIGIN'), ('X-Content-Type-Options', 'nosniff'), ('Content-Encoding', 'gzip'), ('Content-Disposition', 'attachment;filename="1658764018965O-result.vot"'), ('Content-Type', 'application/x-votable+xml'), ('Set-Cookie', 'JSESSIONID=B3AD5976E059A042D39AAA35C9C814FC; Path=/; HttpOnly'), ('Connection', 'close'), ('Transfer-Encoding', 'chunked')]
Retrieving sync. results...
Saving results to: output1.vot.gz
Query finished.
>>> print(result)    
 algorithm_name  collection ...         ra                 dec
     object        object   ...      float64             float64
---------------- ---------- ... ------------------ -------------------
HLA ASSOCIATIONS        HLA ... 196.03170537675234 -49.368511417967795
        exposure        HLA ... 196.03171011284857  -49.36851677699096
        exposure        HLA ...  259.2792180139594   43.13314581814599
        exposure        HLA ...  259.2792180139594   43.13314581814599
        exposure        HLA ...  259.2792180139594   43.13314581814599
        exposure        HLA ...  259.2792180139594   43.13314581814599
HLA ASSOCIATIONS        HLA ...  259.2792176982667  43.133150839338235
HLA ASSOCIATIONS        HLA ...  68.97704902707727 -12.677248264318337
HLA ASSOCIATIONS        HLA ...  68.97704902707727 -12.677248264318337
        exposure        HLA ...  68.97705442773626 -12.677252912230811
             ...        ... ...                ...                 ...
HLA ASSOCIATIONS        HLA ... 210.80500687669544  54.278497365211976
        exposure        HLA ...  152.7572845488674   -4.80118571219738
        exposure        HLA ...  152.7572845488674   -4.80118571219738
HLA ASSOCIATIONS        HLA ...  152.7572806802392  -4.801183163442886
        exposure        HLA ...  152.7572845488674   -4.80118571219738
HLA ASSOCIATIONS        HLA ... 202.44374997285675 -23.750512499483055
        exposure        HLA ... 202.44375533561396 -23.750513053780008
HLA ASSOCIATIONS        HLA ... 202.44374997285675 -23.750512499483055
        exposure        HLA ... 202.44375533561396 -23.750513053780008
        exposure        HLA ...  152.8105559087745   -4.65644496753373
        exposure        HLA ...  152.8105559087745   -4.65644496753373
Length = 2000 rows

This will make a synchronous search, limited to 2000 results to find the observations that match these specific requirements. It will also download a votable file called output.vot.gz containing the result of the query.

The following example uses the string definition of the calibration level (‘PRODUCT’) and executes an asynchronous job to get all the results that match the criteria.

>>> from astroquery.esa.hubble import ESAHubble
>>> esahubble = ESAHubble()
>>> result = esahubble.query_criteria(calibration_level = 'PRODUCT',
...                                   data_product_type = 'image',
...                                   intent='SCIENCE',
...                                   obs_collection=['HLA'],
...                                   instrument_name = ['WFC3'],
...                                   filters = ['F555W', 'F606W'],
...                                   async_job = True,
...                                   output_file = 'output2.vot.gz',
...                                   output_format="votable",
...                                   verbose = False,
...                                   get_query = False)
>>> print(result)  
 algorithm_name  collection ...         ra                 dec
---------------- ---------- ... ------------------ -------------------
HLA ASSOCIATIONS        HLA ... 196.03170537675234 -49.368511417967795
        exposure        HLA ... 196.03171011284857  -49.36851677699096
        exposure        HLA ...  259.2792180139594   43.13314581814599
        exposure        HLA ...  259.2792180139594   43.13314581814599
        exposure        HLA ...  259.2792180139594   43.13314581814599
        exposure        HLA ...  259.2792180139594   43.13314581814599
HLA ASSOCIATIONS        HLA ...  259.2792176982667  43.133150839338235
HLA ASSOCIATIONS        HLA ...  68.97704902707727 -12.677248264318337
HLA ASSOCIATIONS        HLA ...  68.97704902707727 -12.677248264318337
        exposure        HLA ...  68.97705442773626 -12.677252912230811
        exposure        HLA ...  68.97705442773626 -12.677252912230811
             ...        ... ...                ...                 ...
        exposure        HLA ...  345.6583071276117   56.72394842149916
        exposure        HLA ... 345.65831033427037  56.723950318257195
        exposure        HLA ...    345.65826624404   56.72397181023684
        exposure        HLA ...  345.6582969971932   56.72398324705819
        exposure        HLA ... 345.65825980977695   56.72394255099519
        exposure        HLA ...  345.6582694604474    56.7239515193261
        exposure        HLA ...  345.6582302371085   56.72396314167643
        exposure        HLA ... 345.65834620470923   56.72399729379321
HLA ASSOCIATIONS        HLA ...  345.6583089525364  56.723967490767976
        exposure        HLA ... 295.67142911697397  -10.32552919162329
        exposure        HLA ... 140.37867144039893   45.11729184881005
Length = 12965 rows

As has been mentioned, these parameters are optional and it is not necessary to define all of them to execute this function, as the search will be adapted to the ones that are available.

>>> from astroquery.esa.hubble import ESAHubble
>>> esahubble = ESAHubble()
>>> result1 = esahubble.query_criteria(calibration_level = 'PRODUCT',
...                                    async_job = False,
...                                    output_file = 'output3.vot.gz')
>>> result2 = esahubble.query_criteria(data_product_type = 'image',
...                                    intent='SCIENCE',
...                                    async_job = False,
...                                    output_file = 'output4.vot.gz')
>>> result3 = esahubble.query_criteria(data_product_type = 'timeseries',
...                                    async_job = False,
...                                    output_file = 'output5.vot.gz')

If no criteria are specified to limit the selection, this function will retrieve all the observations.

>>> from astroquery.esa.hubble import ESAHubble
>>> esahubble = ESAHubble()
>>> result = esahubble.query_criteria(async_job = False, verbose = True)    
INFO: select o.*, p.calibration_level, p.data_product_type, pos.ra, pos.dec from ehst.observation AS o JOIN ehst.plane as p on o.observation_uuid=p.observation_uuid JOIN ehst.position as pos on p.plane_id = pos.plane_id [astroquery.esa.hubble.core]
Launched query: 'select  TOP 2000 o.*, p.calibration_level, p.data_product_type, pos.ra, pos.dec from ehst.observation AS o JOIN ehst.plane as p on o.observation_uuid=p.observation_uuid JOIN ehst.position as pos on p.plane_id = pos.plane_id'
------>http
host = hst.esac.esa.int:80
context = /tap-server/tap//sync
Content-type = application/x-www-form-urlencoded
200 200
[('Date', 'Mon, 25 Jul 2022 16:21:18 GMT'), ('Server', 'Apache/2.4.6 (Red Hat Enterprise Linux) OpenSSL/1.0.2k-fips PHP/5.4.16 mod_jk/1.2.48'), ('Cache-Control', 'no-cache, no-store, max-age=0, must-revalidate'), ('Pragma', 'no-cache'), ('Expires', '0'), ('X-XSS-Protection', '1; mode=block'), ('X-Frame-Options', 'SAMEORIGIN'), ('X-Content-Type-Options', 'nosniff'), ('Content-Encoding', 'gzip'), ('Content-Disposition', 'attachment;filename="1658766078997O-result.vot"'), ('Content-Type', 'application/x-votable+xml'), ('Set-Cookie', 'JSESSIONID=7098EC515E7A2240E6F3129D23564139; Path=/; HttpOnly'), ('Connection', 'close'), ('Transfer-Encoding', 'chunked')]
Retrieving sync. results...
Query finished.

This last example will provide the ADQL query based on the criteria defined by the user.

>>> from astroquery.esa.hubble import ESAHubble
>>> esahubble = ESAHubble()
>>> result = esahubble.query_criteria(calibration_level = 'PRODUCT',
...                                   data_product_type = 'image',
...                                   intent='SCIENCE',
...                                   obs_collection=['HLA'],
...                                   instrument_name = ['WFC3'],
...                                   filters = ['F555W', 'F606W'],
...                                   get_query = True)
>>> print(result)
select * from ehst.archive where(calibration_level=3 AND data_product_type LIKE '%image%' AND intent LIKE '%science%' AND (collection LIKE '%HLA%') AND (instrument_name LIKE '%WFC3%') AND (instrument_configuration LIKE '%F555W%' OR instrument_configuration LIKE '%F606W%'))

6. Cone searches in the Hubble archive

>>> from astropy import coordinates
>>> from astroquery.esa.hubble import ESAHubble
>>> esahubble = ESAHubble()
>>> c = coordinates.SkyCoord("00h42m44.51s +41d16m08.45s", frame='icrs')
>>> table = esahubble.cone_search(coordinates=c, radius=7, filename="cone_search_m31_5.vot.gz")

This will perform a cone search with radius 7 arcmins. The result of the query will be returned and stored in the votable file ‘cone_search_m31_5.vot.gz’. If no filename is defined and the “save” tag is True, the module will provide a default name. It is also possible to store only the results in memory, without defining neither a filename nor the “save” tag.

7. Cone searches with criteria in the Hubble archive

It is also possible to perform a cone search defined by a target name or coordinates, a radius and a set of criteria to filter the results.

>>> from astroquery.esa.hubble import ESAHubble
>>> esahubble = ESAHubble()
>>> result = esahubble.cone_search_criteria(target= 'm31',radius=7,
...                                         obs_collection=['HST'],
...                                         data_product_type = 'image',
...                                         instrument_name = ['ACS/WFC'],
...                                         filters = ['F435W'],
...                                         async_job = True,
...                                         filename = 'output1.vot.gz',
...                                         output_format="votable")
>>> print(result)    
algorithm_name collection            end_time           ...         ra                dec
-------------- ---------- ----------------------------- ... ------------------ ------------------
  multidrizzle        HST 2002-06-29 15:25:57.556128+00 ... 10.773035733571806  41.28459914735614
       drizzle        HST    2002-06-29 12:15:20.787+00 ... 10.809522856742248  41.29351658280752
       drizzle        HST    2002-06-29 12:15:20.787+00 ... 10.809522856742248  41.29351658280752
       drizzle        HST    2002-06-29 12:15:20.787+00 ... 10.809522856742248  41.29351658280752
       drizzle        HST    2002-06-29 15:25:57.557+00 ... 10.809522856742248  41.29351658280752
       drizzle        HST    2002-06-29 15:25:57.557+00 ... 10.809522856742248  41.29351658280752
       drizzle        HST    2002-06-29 15:25:57.557+00 ... 10.809522856742248  41.29351658280752
      exposure        HST    2002-06-29 10:40:25.757+00 ... 10.809522856742248  41.29351658280752
      exposure        HST    2002-06-29 10:40:25.757+00 ... 10.809522856742248  41.29351658280752
      exposure        HST    2002-06-29 10:49:21.757+00 ... 10.809522856742248  41.29351658280752
      exposure        HST    2002-06-29 10:49:21.757+00 ... 10.809522856742248  41.29351658280752
           ...        ...                           ... ...                ...                ...
      exposure        HST     2013-06-19 01:44:51.32+00 ... 10.766005545644669 41.309233725982274
       drizzle        HST      2014-06-26 02:01:04.4+00 ...  10.56783424321201  41.26161655867049
       drizzle        HST      2014-06-26 02:01:04.4+00 ...  10.56783424321201  41.26161655867049
      exposure        HST    2014-06-26 00:04:17.347+00 ...  10.56783424321201  41.26161655867049
      exposure        HST    2014-06-26 00:04:17.347+00 ...  10.56783424321201  41.26161655867049
      exposure        HST 2014-06-26 00:26:04.320001+00 ...  10.56784158160213  41.26168995624255
      exposure        HST 2014-06-26 00:26:04.320001+00 ...  10.56784158160213  41.26168995624255
      exposure        HST    2014-06-26 01:37:39.337+00 ... 10.567904084182938  41.26166780758625
      exposure        HST    2014-06-26 01:37:39.337+00 ... 10.567904084182938  41.26166780758625
      exposure        HST    2014-06-26 02:01:03.337+00 ... 10.567896755477244  41.26159439998882
      exposure        HST    2014-06-26 02:01:03.337+00 ... 10.567896755477244  41.26159439998882
Length = 323 rows
>>> from astropy import coordinates
>>> from astropy import units as u
>>> from astroquery.esa.hubble import ESAHubble
>>> esahubble = ESAHubble()
>>> coords = coordinates.SkyCoord("00h42m44.51s +41d16m08.45s", frame='icrs')
>>> result = esahubble.cone_search_criteria(coordinates=coords,
...                                         radius=7*u.arcmin,
...                                         obs_collection=['HST'],
...                                         instrument_name = ['WFPC2'],
...                                         filters = ['F606W'],
...                                         async_job = True,
...                                         filename = 'output1.vot.gz',
...                                         output_format="votable")
>>> print(result)   
algorithm_name collection          end_time          ...         ra                dec
-------------- ---------- -------------------------- ... ------------------ ------------------
      exposure        HST 1996-07-11 19:57:16.567+00 ... 10.707934959432448  41.29717554921647
      exposure        HST 1996-07-11 19:57:16.567+00 ... 10.707934959432448  41.29717554921647
      exposure        HST 1996-07-11 23:10:56.567+00 ... 10.707934959432448  41.29717554921647
      exposure        HST 1996-07-11 23:10:56.567+00 ... 10.707934959432448  41.29717554921647
      exposure        HST 1995-08-07 17:18:17.427+00 ... 10.667025486961762  41.27549451122148
      exposure        HST 1995-08-07 17:18:17.427+00 ... 10.667025486961762  41.27549451122148
      exposure        HST  1998-08-13 15:41:53.99+00 ...  10.62792588770676  41.16842053688991
      exposure        HST  1998-08-13 15:41:53.99+00 ...  10.62792588770676  41.16842053688991
      exposure        HST  1998-08-13 15:53:53.99+00 ... 10.627778569005512 41.168427385527195
      exposure        HST  1998-08-13 15:53:53.99+00 ... 10.627778569005512 41.168427385527195
      exposure        HST 1999-06-06 17:52:53.323+00 ... 10.726290793310492  41.17571391732456
      exposure        HST 1999-06-06 17:52:53.323+00 ... 10.726290793310492  41.17571391732456
      exposure        HST  1999-06-06 19:19:33.45+00 ... 10.726290793310492  41.17571391732456
      exposure        HST  1999-06-06 19:19:33.45+00 ... 10.726290793310492  41.17571391732456
      exposure        HST  1998-08-13 17:18:53.99+00 ... 10.627778569005512 41.168427385527195
      exposure        HST  1998-08-13 17:18:53.99+00 ... 10.627778569005512 41.168427385527195
      exposure        HST  2002-06-29 10:28:56.79+00 ... 10.673753121140141  41.33685901875662
      exposure        HST  2002-06-29 10:28:56.79+00 ... 10.673753121140141  41.33685901875662
      exposure        HST  2002-06-29 10:35:56.79+00 ... 10.673753121140141  41.33685901875662
      exposure        HST  2002-06-29 10:35:56.79+00 ... 10.673753121140141  41.33685901875662

This will perform a cone search with radius 7 arcmins around the target (defined by its coordinates or its name) using the filters defined when executing the function.

This function allows the same parameters than the search criteria (see Section 5).

8. Getting access to catalogues

This function provides access to the HST archive database using the Table Access Protocol (TAP) and via the Astronomical Data Query Language (ADQL).

>>> from astroquery.esa.hubble import ESAHubble
>>> esahubble = ESAHubble()
>>> result = esahubble.query_tap(query="select top 10 * from hsc.hubble_sc", output_file="test.vot.gz") 

This will execute an ADQL query to download the first 10 sources in the Hubble Source Catalog (HSC) (format default: compressed votable). The result of the query will be stored in the file ‘test.vot.gz’. The result of this query can be viewed by doing result.get_results() or printing it by doing print(result).

To access the same information shown in eHST Science Archive: .. doctest-remote-data:

>>> from astroquery.esa.hubble import ESAHubble
>>> esahubble = ESAHubble()
>>> result = esahubble.query_tap(query="select top 10 * from ehst.archive", output_file="archive.vot.gz") 

Deprecation Warning: this method was previously named as query_hst_tap. Please modify your scripts accordingly.